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MODELING OF DIFFUSION MASS TRANSFER
OF IMPLANTED DOPANTS IN SILICON.
I. FORMULATION OF THE MODEL

B. B. Khina UDC 621.315.592

A generalized model of diffusion mass transfer of implanted dopant atoms (donors and acceptors) in crystal-
line silicon has been developed. It takes into account all possible charge states of diffusing species (vacancies,
interstitial Si atoms, and "dopant atom–vacancy" and "dopant atom–interstitial silicon atom" pairs) and the
difference between the diffusion coefficients of differently charged pairs. Expressions for the source/sink terms
are derived which describe all bimolecular reactions between the species (generation and annihilation) in the
course of diffusion with account for their charges.

Introduction. The main trend in the development of the technology of very large-scale integrated (VLSI) cir-
cuits is a further increase in the degree of integration, that is, an increase in the number of transistors per unit area
and creation of multilayer heterostructures. This has led to the appearance of the so-called ultrashallow p–n junctions
(USJ). The leading manufacturers of VLSI circuits are carrying out investigations directed at the reduction of the depth
of USJ to L ≤ 10 nm.

At the present time, a basic means of obtaining USJ is ion implantation of dopants (donors (As, P, Sb) or
acceptors (B, Al)) into silicon at a relatively low energy and high dose of atoms with subsequent annealing to electri-
cally activate them. In the case of high-temperature annealing there is diffusion of dopant atoms, which is accompa-
nied by interaction with nonequilibrium point defects. The choice of the correct regime of annealing is needed to
obtain the required profile of the concentration of donors or acceptors over the depth, which determines the properties
of p–n junctions in VLSIC and the characteristics of the entire device. Therefore investigation of diffusion mass trans-
fer of implanted atoms in silicon plays an important role in the technology of VLSI circuits (see reviews [1–3]), with
mathematical stimulation being widely used for the purpose [4].

However, in the mathematical models developed to date [5–9, etc.] such important factors as the presence of
different charge states of diffusing species and their interaction with one another (for example, annihilation/generation
of point defects) in the course of homogenizing are not taken into account in full measure. In view of this, the aim
of the present work is to formulate a generalized model of diffusion of implanted atoms in silicon with accounts for
all possible charge states of both nonequilibrium point defects (vacancies and interstitial atoms) and diffusing com-
plexes (vapor) of the type of "dopant atom–vacancy" and "dopant atom–interstitial atom of silicon," as well as inter-
actions of dissimilar species during diffusion.

Physical Foundations of the Model. The physics of diffusion in silicon has been well studied [1–3]. In con-
trast to metals where "direct" mechanisms of diffusion operate (a vacancy mechanism for substitutional atoms and an
interstitial one for interstitial atoms) [10, 11], in a covalent silicon crystal there are "indirect" mechanisms owing their
origin to the interaction of dopant atoms with point defects (vacancies V and interstitial silicon atoms I). The follow-
ing elementary reactions of the lattice dopant atom A with a point defect are possible: A + V ↔ AV (formation of
the A–vacancy pair); A + I ↔ Ai (kick-out of the atom A by the interstitial atom Si leading to the formation of the
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interstitial dopant atom Ai); A + I ↔ AI (formation of the "atom A–interstitial atom Si" pair, which occupies one po-
sition in the crystal lattice — the so-called interstitialcy defect); A ↔ Ai + V (dissociation reaction). Since dopant
atoms in the interstitial and interstitialcy positions are experimentally indistinguishable, diffusion of the AI complexes
(pairs) is considered, where AI is understood to be both an interstitialcy and an interstitial atom Ai, which can be dis-
placed only due to constant interaction with interstitial atoms of Si [2, 3]. Because of the presence of the binding en-
ergy between the dopant atom A and a vacancy located even at the position of the third nearest neighbor of this atom,
the diffusion of AV pairs is considered, and the lattice atoms A are regarded as immobile [1–3].

Depending on the local configuration in the crystal lattice of silicon the point defects (vacancies and silicon
self-interstitials) may have an electric charge %1, %2, or 0 [2]. The A atoms at the sites of the crystal lattice have a
charge +1 (donors) or −1 (acceptors). They can form diffusing complexes (AX)α, α = 0, %1, with neutral X0 and op-
positely charged point defects: the donors pair with the X− and X= species and the acceptors — with the X+ and
X++ defects, X B V, I. The total diffusion flow of dopant atoms is composed of the flows of AX pairs located in
different charge states. This is accompanied by the appearance of an internal electric field, which influences the diffu-
sion of charged particles.

In order to construct a model it is first of all necessary to determine the relationship between the concentra-
tions of diffusing species (V, I, AV, AI) in different charge states.

Concentration of Diffusing Species. In a semiconductor a simple relationship between the concentrations of
electrons n, holes p, and "intrinsic" charge carriers ni holds:

ni
2
 = np   or   

ni

p
 = 

n

ni
 , (1)

where the temperature dependence of ni is known from the literature [2].
The concentration of vacancies CV

α and interstitial silicon atoms CI
α in a charge state α, α = %1, %2, are

connected with the concentrations of the corresponding neutral defects (α = 0) by the relations [2]

C
X
α = K

X
αC

X
0 


n
ni





−α
 ,      X B V, I . (2)

The coefficients KX
α have the meaning of equilibrium constants of the reactions of interaction of the neutral defect

X0 (X B V, I) with electrons:

X
0
 + αe

−
 ↔ X

α
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X
α = 

C
X
λ

∗
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X

0
∗

 




n

ni





−α

 ,     α = % 1, % 2 . (3)

It is clear that KX
0 = 1 for α = 0. The values of KX

0, X B V, I, at different temperatures are known [12, 13]. Then

the total concentration of the point defects CX = ∑ 

α

CX
α, where α = 0, %1, %2, is expressed in terms of the concen-

tration of neutral defects:

CX = C
X

0ψX ,     ψX = ∑ 

α=−2

+2

K
X
α 


n
ni





−α
 ,     X B V, I . (4)

For an "intrinsic", i.e., defectless undoped semiconductor, when n = p B ni, the equilibrium concentrations of
neutral defects are interrelated as

C
X

0
∗

 = 
CX
∗

ψX
∗

 ,     ψX
∗

 = ∑ 

α=−2

+2

K
X
α ,     X B V, I . (5)
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We will express the coupling between the total concentration of the pairs C(AX) = ∑ 

α

CAX
α, α = 0, %1, X B V, I,

and the quantities CAX
α, α = 0, %1, for acceptors and donors; to be specific, we take B− and As+. As a reference

state we adopt the pairs formed in the course of the reaction of a dopant atom with a neutral defect X0, i.e., (BX)−

and (AsX)+.
The boron atoms form the (BX)α pairs in the reactions B− + Xα+1 ↔ (BX)α, for which the equilibrium con-

stants are expressed as

K
B
−
X
α+1 = 

C(BX)
α

∗

C
B
−

∗
C

X
α+1

∗
 ,     α = 0, % 1 . (6)

For small departures from equilibrium we may write

C(BX)
α = B

B
−
X
α+1C

B
−C

X
α+1 . (7)

Summing up (7) over the charge states α, subject to Eqs. (1) and (2), we obtain

C(BX)
α = 

CBX

ξX
(a)

 K
B
−
X
α+1K

X
α+1 





p

ni





α+1

 ,     α = 0, % 1 , (8)

where

ξX
(a)

 = ∑ 

α=0

+2

K
B
−
X
α 


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p
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



α

 ,     X B V, I . (9)

For the donor (As) the following reactions of the formation of pairs are possible: As+ + Xα−1 ↔ (AsX)α, α =
0, %1. By analogy with Eqs. (7)–(9) we obtain

C(AsX)
α = 

CAsX

ξX
(d)

 K
As

+
X
α−1K

X
α−1 



n
ni





1−α
 ,     α = 0, % 1 , (10)

ξX
(d)

 = ∑ 

α=−2

0

K
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+
X
α 


n
ni





−α
 ,     X B V, I . (11)

Continuity Equations. As a basis the so-called five-stream model was taken, which is described schematically
in [12, 14]. In simplified modifications such an approach was applied to analyze the diffusion of dopants in silicon
under different conditions [15, 16]. Since diffusing in silicon are the vacancies V, interstitial atoms of Si, and mobile
pairs (complexes) AV and AI which interact with one another while the dopant atoms A at the lattice sites are immo-
bile, we must write five equations of reaction diffusion:

∂CI

∂t
 = − div JI − 

1
ω

 (RI−V + RA−I + RAV−I) , (12)

∂CV

∂t
 = − div JV − 

1
ω

 (RI−V + RA−V + RAI−V) , (13)
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∂CAV

∂t
 = − div JAV + 

1
ω

 (RA−V − RAV−I − RAV−AI) , (14)

∂CAI

∂t
 = − div JAI + 

1
ω

 (RA−I − RAI−V − RAV−AI) , (15)

∂CA

∂t
 = 

1
ω

 (RAI−V + RAV−I + 2RAV−AI − RA−I − RA−V) . (16)

Here CA is the concentration of the lattice atoms A; JY denotes diffusion flows (Y B V, I, AV, AI), RX−Y are the
sources/sinks having the meaning of the rates of reactions between the species of kind X and Y (X, Y B A, V, I, AV,
AI, X ≠ Y); ω = a0

3 is the volume of the lattice cell of silicon. In the present work, the sources/sinks associated with
the formation and evolution of AmXn-type clusters and extended defects (e.g., dislocations and the so-called p311q-de-
fects) are not taken into account; they are the subject of separate studies [17 etc.]. Equations (12)–(16) have been writ-
ten for total concentrations diffusing species, i.e., they include all their charge states.

Since electrons and holes are much more mobile than the diffusing species V, I, AV, and AI, Eqs. (12)–(16)
should be supplemented with the condition of electrical neutrality:

     ∑ 

α=%1,%2

   αC
X
α + ∑ 

β=%1

 βC(AX)
β + γC

A
γ + p − n = 0 ,     X B V, I ,     γ = 1   or   − 1 . (17)

Next it is necessary to determine the diffusion flows JY with account for the drift of charged species in the
internal electric field and the sources/sink terms RX−Y.

Diffusion Flows. We will consider separately the diffusion flows of point defects (vacancies and interstitial
atoms of silicon) and AV and AI pairs.

Diffusion of point defects. For a defect of the X type (X B V, I) with a charge α the expression for the flow
with account for the effect of internal electric field has the form [2, 18]

J
X
α = − D

X
α∇C

X
α + µ

X
ααqεC

X
α . (18)

Here DXα is the diffusion coefficient of Xα species; µX
α is the mobility determined from Einstein’s relation µX

α =
DX

α ⁄ (kBT); ε = −∇ϕ. Using the Boltzmann distribution of charge carriers in an electric field n = ni exp [qϕ ⁄ (kBT)],
we obtain ε = −(kBT ⁄ q)(ni

 ⁄ n)∇(n ⁄ ni). With account for the foregoing, we transform (18) accepting the assumption that
the diffusion coefficient of point defects is independent of their charge DX

α = DX and using relation (1):

J
X
α = − DX 




∇C

X
α − αC

X
α∇ ln 

p

ni




 . (19)

For defects of the X type the total diffusion flow is equal to JX = ∑ 

α

JX
α. Then from Eq. (19) with the aid

of relations (2) and (4) we obtain

JX = − DX 



∇CX − CXνX∇ ln 

p

ni




 ,     νX = 

1
ψX

  ∑ 

α=−2

+2

 αK
X
α 




p

ni





α

 ,     X B V, I . (20)

The values of the diffusion coefficients of point defects DX are known from the literature [2, 3, 19].

850



Diffusion of the AV and AI pairs. We will consider the diffusion flows of the AX pairs, X B V, I, for the
atoms of acceptors (B−) and donors (As+), since for them the connection between the concentrations of pairs in differ-
ent charge states is expressed differently (see Eqs. (8)–(11)).

For the acceptor (B−) the diffusion flow of the (BX)α pairs, α = 0, %1, is described similarly to (19) with
account for the difference between the diffusion coefficients for different charge states. Substituting (8) into (19) and
performing transformations, we obtain

J(BX)
α = − D(BX)

αB
B
−
X
α+1K

X
α+1 




p

ni





α+1

 



∇ 

CBX

ξX
(a)

 + 
CBX

ξX
(a)

 ∇ln 
p

ni




 . (21)

The total flow is determined as a sum over charge states JBX = ∑ 

α

J(BX)α. Then from (21), having differenti-

ated the term CBX
 ⁄ ξX

(a) subject to expression (9), we obtain

JBX = − 
1

ξX
(a)

  ∑ 

α=−1

+1

D(BX)
αK

B
−
X
α+1K

X
α+1 





p

ni





α+1

 






∇CBX + CBX 

ηX
(a)

ξX
(a)  ∇ln 

p

ni







 , (22)

where for the acceptor dopant

ηX
(a)

 = K
B
−
X

0 − K
B
−
X
++ K

x
++ 




p

ni





2

 ,     X B V, I . (23)

Equation (22) contains the diffusion coefficients of the (BX)α pairs, α = 0, %1, which are not equal between
themselves. Once their values can be evaluated on the basis of experimental data on diffusion, Eq. (22) can be used
for modeling.

In order to reduce the number of diffusion coefficients the following approach is possible [12]. The difference
between the activation energies of the migration of the (BV)− and (BV)0 complexes is due to the difference in the
binding energy Eb in them:

D(BX)
0

D(BX)
−
 = ρBX

−
 = exp 




− 
∆Eb
kBT




 , (24)

where ∆Eb = Eb(B− ⁄ X+) − Eb(B− ⁄ X0) = 0.3 eV, and this difference is electrostatic in character [12]. Therefore for the
diffusion coefficients of the (BX)+ and (BX)0 pairs we may write

D(BX)
+

D(BX)
0
 = ρBX

+ (25)

and adopt that ρBX
+  = ρBX

−  B ρBX, X B V, I. Then Eq. (22) will be rewritten in the form

JBX = − D(BX)
0 
θX
(a)

ξX
(a)

 






∇CBX + CBX 

ηX
(a)

ξX
(a)

 ∇ln 
p

ni







 , (26)

θX
(a)

 = ∑ 

α=0

+2

K
B
−
X
αK

X
α (ρBX)

α−1
 




p

ni





α

 ,     X B V, I . (27)
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Using the analogy with Eqs. (19), (21), and (22) and taking into account Eqs. (10) and (11), for the donor
dopant (atoms As+) we obtain the following expression for the total diffusion flow of the AsX pairs in all of the
charge states α = 0, %1:

JAsX = − 
1

ξX
(d)

  ∑ 

α=−1

+1

D(AsX)
αK

As
+
X
α−1K

X
α−1 





n

ni





1−α

 






∇CAsX + CAsX 

ηX
(d)

ξX
(d)

 ∇ln 
n

ni







 , (28)

ηX
(d)

 = K
As

+
X

0 − K
As

+
X
=K

X
= 


n
ni





2

 ,     X B V, I . (29)

For the donors (atoms P+) the difference between the energies of the interatomic bond in the (PX)− and (PX)0

pairs is equal to ∆Eb = Eb((PX)−) − Eb((PX)0) = 0.3 eV, which is the reason for the difference between the corre-
sponding diffusion coefficients [20]. Using this value of ∆Eb for the atoms As+, we introduce the following relations
by analogy with Eqs. (24) and (25):

D(AsX)
−

D(AsX)
0
 = ρAsX

−
 = exp 




− 
∆Eb

kBT




 ,     

D(AsX)
0

D(AsX)
+
 = ρAsX

+
(30)

and assume that ρAsX
+  = ρAsX

−  B ρAsX, X B V, I. Then Eq. (28) takes the form

JAsX = − D(AsX)
0 
θX
(d)

ξX
(d)

 






∇CAsX + CAsX 

ηX
(d)

ξX
(d)

 ∇ln 
n

ni







 , (31)

θX
(d)

 = ∑ 

α=−2

0

K
As

+
X
αK

X
α (ρAsX)

−α−1
 


n
ni





−α
 ,     X B V, I . (32)

Thereby all the diffusion flows entering into Eqs. (12)–(15) have been determined.
Expressions for Sources/Sinks. In describing the rate of recombination of nonequilibrium point defects (the

term RI−V in Eqs. (12) and (13)), the assumption on a small departure from equilibrium is usually used and, without
account for charge states, this rate is determined in the form

RI−V = 4πr (DI + DV) (CICV − CI
∗
CV
∗ ) , (33)

where the radius of capture r is taken to be equal to the period of the silicon lattice: r = a0 = 0.235 nm [2, 18, 21].

To take into account different charges of the interstitial silicon atoms Si and vacancies CICV − CI
∗CV

∗  in (33)

should be replaced by the sum over charge states ∑
α,β

(CIαCV
β) − CI

α∗ CV
β

∗ , α, β = 0, %1, %2, since, as noted above,

the diffusion coefficient of point defects is independent of their charge. To simplify the representation, we assume that
the radius of interaction r is also independent of the charges of point defects and is equal to a0 [2]. To reduce the

number of possible variants, we will consider pair reactions of recombination of a charged defect of the same type (I

or V) with a neutral defect of another type, i.e., the following nine pairs: I0 + V0, I− + V0, I= + V0, I+ + V0, I++ + V0,

I0 + V−, I0 + V=, I0 + V+, and I0 + V++. Then, using Eqs. (2), (4), and (5), we obtain

RI−V = 4πa0 (DI + DV) ϕI−V 




CI

ψI
 
CV

ψV
 − C

I
0
∗

C
V

0
∗ 


 ,     ϕI−V = ψI + ψV − 1 . (34)
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We will describe the kinetics of the formation of the "dopant atom–point defect" pairs (the terms RA−I and
RA−V in Eqs. (12)–(16)) for the atoms of the acceptor A B B−. For the reaction of the formation of the (BX)α pair,
α = 0, %1, X B V, I, the equilibrium constant (see Eq. (6)) has the meaning of the ratio of the constants of the rates
of direct and reverse reactions: KB

−
X
α+1 = kf

α ⁄ kr
α. With a small departure from equilibrium for one charge state α we

may write

RB−X
α

 = kf
α

C
B
−C

X
α+1 − kr

α
 C(BX)

α ,     kf
α

 = 4πrDX , (35)

where it is adopted that r = a0 [2]. For all charge states the rate of formation of BX pairs will be determined as a
sum over α, and from Eq. (35), subject to Eqs. (2), (4), and (8), we obtain

RB−X = 4πa0DXϕX
(a)

 







C
B
−CX

ψX

 − 
CBX

ξX
(a)







 ,     ϕX

(a)
 = ∑ 

α=0

+2

K
X
α 




p

ni





α

 . (36)

For he donor atoms (As+) the expressions for the kinetics of formation of the (AsX)α pairs, α = 0, %1, X B V, I, are
derived similarly to Eq. (36) subject to Eq. (10):

RA−X = 4πa0DXϕX
(d)

 







C
As

+CX

ψX

 − 
CAsX

ξX
(d)







 ,     ϕX

(d)
 = ∑ 

α=−2

0

K
X
α 




n

ni





−α

 . (37)

We will consider the kinetics of the recombination of the (BI)α and (BV)α pairs, α = 0, %1, with vacancies
and interstitial atoms, respectively. According to [2], for such bimolecular reactions the role of Coulomb interaction is
insignificant, therefore for the reaction (BI)α + V ↔ B− with one charge state α we may write

K(BI)
α
−V

 = 
C

B
−

∗

C(BI)
α

∗
CV
∗  = 

kf
α

kr
α ,     kf

α
 = 4πr DV + D(BI)

α


(38)

and as a radius of interaction we can adopt the quantity a0. Then from Eq. (38), summing over all charge states α =
0, %1 and taking into account Eqs. (2), (6), (9), (24), (25), and (27), we obtain an expression for the recombination
rate RBI−V:

RBI−V = 4πa0 






DV + D(BI)

0 
θI
(a)

ξI
(a)







 CBICV − C

B
−CV

∗
C

I
0
∗ ξI

(a)
 . (39)

The source/sink term RBV−I will be given in the same form:

RBV−I = 4πa0 






DI + D(BV)

0 
θV
(a)

ξV
(a)







 CBVCI − C

B
−CI

∗
C

V
0

∗ ξV
(a)
 .

(40)

By analogy with Eqs. (39) and (40) for the donor atoms (As+) the kinetic parameters RAsI−V and RAsV−I will
be written as

RAsI−V = 4πa0 






DV + D(AsI)

0 
θI
(d)

ξI
(d)







 CAsICV − C

As
+CV

∗
C

I
0
∗ ξI

(d)
 , (41)
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RAsV−I = 4πa0 






DI + D(AsV)

0 
θV
(d)

ξV
(d)







 CAsVCI − C

As
+CI

∗
C

V
0

∗ ξV
(d)
 . (42)

To determine the parameter RBV−BI, we will consider the bimolecular reaction BV + BI ↔ 2B− assuming that
the kinetics of recombination does not depend on the charges of the pairs:

KBV−BI = 
(C

B
−

∗ )2

CBV
∗

CBI
∗

 = 
kf

kr

 . (43)

Using the foregoing considerations, we obtain

RBV−BI = 4πa0 






D(BV)

0 
θV
(a)

ξV
(a)

 + D(BI)
0 
θI
(a)

ξI
(a)







 CBVCBI − C

B
−

 2
C

I
0
∗

C
V

0
∗ ξI

(a)ξV
(a)
 , (44)

and for the donor dopant (As+)

RAsV−AsI = 4πa0 






D(AsV)

0 
θV
(d)

ξV
(d)

 + D(AsI)
0 
θI
(d)

ξI
(d)







 CAsVCAsI − C

As
+

 2
C

I
0
∗

C
V

0
∗ ξI

(d)ξV
(d)
 . (45)

The values of the concentrations of diffusing species CI, CV, CAI, and CAV, which are contained in the equa-
tions for the source/sink terms (34), (36), (39), (40), and (44), are determined from the solution of the system of equa-
tions (12)–(16), whereas the concentration of free electrons/holes in the expressions for the parameters θX

(a,d), ξX
(a,d),

ϕX
(a,d), and ψX, X B V, I, are determined from the condition of electric neutrality (17). The equilibrium concentrations

of the point defects CX
∗  and CX

0
∗  in silicon are known from the literature [2, 22].

Thus, all the sources/sinks that enter into continuity equations (12)–(16) have been determined. Since the prob-
lem of the diffusion of the implanted dopant in silicon is substantially nonlinear, it can be solved only numerically.

Diffusion Coefficients under Nonequilibrium Conditions. Experimental data on the coefficients of diffusion
in silicon were obtained under "intrinsic" conditions, when the content of a dopant is small and the concentrations of
point defects are close to equilibrium ones: CX = CX

∗ , X B V, I. These quantities have the meaning of coefficients of
self-diffusion of the dopant DA

∗  (in the terminology of the theory of diffusion in metals [10, 11]). The relative contri-
bution of the AI pairs to the diffusion mass transfer of A atoms is characterized by the formal parameter fI [2, 3, 23]:

fI = 
DAI
∗

DAI
∗

 + DAV
∗  = 

DAI
∗

DA
∗

 , (46)

where DAX
∗  is the diffusion coefficient of the AX pairs, X B V, I, in all charge states under quasi-equilibrium condi-

tions. Then, under nonequilibrium conditions, i.e., in the presence of excessive point defects, the effective diffusion co-
efficient DA is related to the experimentally measured quantity DA

∗  as [2, 3, 23]

DA = DA
∗

 



fI 

CAI

CAI
∗

 + (1 − fI) 
CAV

CAV
∗




 = DA

∗
 



fI 

CI

CI
∗
 + (1 − fI) 

CV

CV
∗



 . (47)

It is adopted here that CAX
 ⁄ CAX

∗  = CX
 ⁄ CX

∗ , X B V, I, [2, 23]. Equations (46) and (47) yield the relationship between
the diffusion coefficients of the AX pairs under quasi-equilibrium conditions DAX

∗  and the quantity DAX for nonequili-
brium conditions, X B V, I:
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DAI = DAI
∗

 
CI

CI
∗
 ,   DAV = DAV

∗
 
CV

CV
∗

 , (48)

where DAI
∗  ⁄ DA

∗ fI; DAV
∗  = DA

∗ (1 − fI). It is clear that under nonequilibrium conditions the diffusion coefficients of the
AX pairs increase substantially, since at the early stages of annealing after implantation CX >> CX

∗ , X B V, I.
Similarly to (48), for the diffusion coefficients of the (AX)α pairs in different charge states, α = 0, %1, as-

suming that C(AX)α
 ⁄ C(AX)α

∗  = CX
β ⁄ CX

β
∗ , X B V, I, we obtain

D(AX)
α = D(AX)

α
∗

 
C

X
β

C
X
β

∗  , (49)

where for the atoms of the acceptor (B−) β = α + 1 and for those of the donor (As+) β = α − 1.
The values of fI and DA

∗  for various dopants are given in the literature [2, 3, 19, 23, etc.]. Therefore the
model suggested can be used for numerical investigation of the diffusion of the implanted atoms of donors and ac-
ceptors in silicon.

Conclusions. Thus, a more general (than those available in the literature) mathematical model of diffusion of
implanted atoms (of both donors and acceptors) in silicon has been formulated which takes into account all possible
charge states of both point defects (vacancies and interstitial atoms of Si) and diffusing complexes (pairs) AI, AV. In
deriving expressions for diffusion flows the difference between the diffusion coefficients of the AI and AV pairs in
different charge states was taken into account. In the framework of the five-stream model, generalized expressions
were obtained for the rates of all possible pair reactions of interaction of dissimilar diffusing species (point defects and
AI, AV pairs) having different electric charges. The method for estimating the diffusion coefficients of the AI, AV
pairs under nonequilibrium conditions from experimental values of the self-diffusion coefficient has been described.

The results of numerical simulation of the diffusion of an implanted dopant in silicon will be presented in the
second part of the article.

NOTATION

a0, period of the crystal lattice, m; C, concentration, m−3; D, diffusion coefficient, m2 ⁄ sec; E, energy, eV;
∆E, difference of energies, eV; J, diffusion flow, m ⁄ sec; K, reaction equilibrium constant; k, reaction rate constant,
sec−1; kB, Boltzmann constant; L, depth, m; n, concentration of free electrons, m−3; p, concentration of holes, m−3; q,
electron charge, C; R, source/sink strength, m3 ⁄ sec; r, radius of interaction, m; T, temperature, K; t, time, sec; α,
charge state; ε, electric field strength, V/m; µ, mobility, m2 ⁄ (J⋅sec); ρ, ratio of diffusion coefficients; ϕ, electric poten-
tial, V; ω, volume of an elementary crystal cell, m3; ξ, ψ, η, ν, θ, and ϕ, dimensionless complexes. Subscripts: b,
bond; i, internal; f, forward reaction; r, reverse reaction. Superscripts: *, equilibrium value; a, acceptor; d, donor.
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